博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
矩阵乘法&&dp加速矩阵的思路(E. Wet Shark and Blocks)
阅读量:4964 次
发布时间:2019-06-12

本文共 1881 字,大约阅读时间需要 6 分钟。

There are b blocks of digits. Each one consisting of the same n digits, which are given to you in the input. Wet Shark must choose exactly one digit from each block and concatenate all of those digits together to form one large integer. For example, if he chooses digit 1 from the first block and digit 2 from the second block, he gets the integer 12.

Wet Shark then takes this number modulo x. Please, tell him how many ways he can choose one digit from each block so that he gets exactly k as the final result. As this number may be too large, print it modulo 109 + 7.

Note, that the number of ways to choose some digit in the block is equal to the number of it's occurrences. For example, there are 3ways to choose digit 5 from block 3 5 6 7 8 9 5 1 1 1 1 5.

Input

The first line of the input contains four space-separated integers, nbk and x (2 ≤ n ≤ 50 000, 1 ≤ b ≤ 109, 0 ≤ k < x ≤ 100, x ≥ 2) — the number of digits in one block, the number of blocks, interesting remainder modulo x and modulo x itself.

The next line contains n space separated integers ai (1 ≤ ai ≤ 9), that give the digits contained in each block.

Output

Print the number of ways to pick exactly one digit from each blocks, such that the resulting integer equals k modulo x.

Examples
input
12 1 5 10 3 5 6 7 8 9 5 1 1 1 1 5
output
3
input
3 2 1 2 6 2 2
output
0
input
3 2 1 2 3 1 2
output
6
Note

In the second sample possible integers are 22, 26, 62 and 66. None of them gives the remainder 1 modulo 2.

In the third sample integers 11, 13, 21, 23, 31 and 33 have remainder 1 modulo 2. There is exactly one way to obtain each of these integers, so the total answer is 6.

 

1、这个问题要是想到dp的话还是很容易想到状态的转移方程的,但是时间复杂度太高我们需要优化。

2、有一种矩阵优化的方式,这个题目一看b的范围那么打我们能想到的就是快速幂,但是不能纯粹的快速幂,我们需要加上矩阵的优化。

3、但是如何构造矩阵成了本题的关键,我看了某大牛的思路感觉这个很好。http://codeforces.com/blog/entry/23196

 

 

转载于:https://www.cnblogs.com/Heilce/p/6601810.html

你可能感兴趣的文章
python 进程间通信
查看>>
深拷贝 vs 浅拷贝 释放多次
查看>>
Javascript 有用参考函数
查看>>
点群的判别(三)
查看>>
GNSS 使用DFT算法 能量损耗仿真
查看>>
【转】Simulink模型架构指导
查看>>
MYSQL数据库的导出的几种方法
查看>>
SQL Server-5种常见的约束
查看>>
硬件之美
查看>>
[转载]java开发中的23种设计模式
查看>>
表格的拖拽功能
查看>>
函数的形参和实参
查看>>
文字过长 用 ... 表示 CSS实现单行、多行文本溢出显示省略号
查看>>
1Caesar加密
查看>>
【TP SRM 703 div2 500】 GCDGraph
查看>>
MapReduce 重要组件——Recordreader组件 [转]
查看>>
webdriver api
查看>>
apache 实现图标缓存客户端
查看>>
揭秘:黑客必备的Kali Linux是什么,有哪些弊端?
查看>>
linux系统的远程控制方法——学神IT教育
查看>>